CARBANION ADDITION TO A METALATED ACETALDEHYDE. A NEW REGIOSPECIFIC ALKENE SYNTHESIS *

DAVID F. MARTEN* and MAHMOUD N. AKBARI

Department of Chemistry, Westmont College, Santa Barbara, CA 93108 (U.S.A.) (Received May 23rd, 1985; in revised form October 2nd, 1986)

Summary

The reaction of 2-[(dicarbonyl)(η^5 -cyclopentadienyl)iron]acetaldehyde with organolithium and Grignard reagents results in efficient addition to the aldehyde carbonyl. The intermediate alkoxides have been treated with tetrafluoroboric acid to give high yields of isolated η^2 -alkene complexes of the dicarbonyl(η^5 -cyclopentadienyl)iron cation. Using this procedure the following alkenes were produced as complexed ligands to iron in 50–90% yield: propene, 1-hexene, 3-methyl-1-pentene, 3,3-dimethyl-1-butene, 1,3-butadiene, and styrene.

A variety of different types of products have been observed when the (n^5) $C_{H_2}(CO)_2$ FeL = FpL (1) system and carbanions are reacted. These reactions have involved nucleophilic attack at the C₅H₅ ring [1], terminal CO [1], L [2] and iron [1,2] to give addition or substitution products plus electron transfer to give reduction products (Fp_2) [1-3]. The nature of L and the carbanion, plus the charge on iron has a dramatic effect on the type of reaction found in a particular system. In our studies of transition metal containing carbanions, we were interested in those cases of 1 where L has an organic carbonyl group. The examples that have already been reported by others include the attack of alkyllithiums at a terminal carbonyl for L = acyl to give β -diketonate structures [6] attack at the complexed alkene in the cationic η^2 -acrolein complex with organocopper reagents [2] and electron transfer when $L = CH_2O_2CR$ and alkyllithiums are reacted [3]. In none of these cases was the carbanion reported to react at the organic carbonyl carbon. We decided to examine the known $FpCH_2C(=O)H(2)$ [5] in carbanion reactions to further define the chemistry of this system (1). The reaction of 2 with strongly basic carbanions could follow any of the routes described above. In addition, 2 could undergo nucleophilic addition to the aldehyde carbonyl to yield an intermediate alkoxide, or

^{*} Part of this work was carried out at the Department of Chemistry, University of Oklahoma, Norman, OK 73019 (U.S.A.).

RM	4:R =	Yield (%)	RM	4:R =	Yield (%)
n-BuLi	n-Bu	90	MeLi	Me	90
n-BuMgCl	n-Bu	50	CH ₂ =CH-MgBr	CH=CH ₂	65
s-BuLi	s-Bu	81	PhLi	Ph	61
t-BuLi	t-Bu	88	PhMgBr	Ph	76

YIELDS OF CARBANION ADDITION TO 2 PRODUCING 4 FOLLOWING ACIDIFICATION

undergo deprotonation to form an enolate [6]. We report here the results of the reaction of 2 with unstabilized alkyllithium and Grignard reagents.

Results and discussion

When butyllithium was added to 2 in tetrahydrofuran (THF) at -78° C the light yellow solution darkened slightly. Excess tetrafluoroboric acid in ether was added and a yellow solid precipitated. This solid was dissolved in methylene chloride, filtered, precipitated with ether and identified as $Fp(\eta^2-1-hexene)^+ BF_4^-$ which must have arisen from the efficient addition to the aldehyde carbonyl in 2; producing 3 as an intermediate. A similar result was obtained with butylmagnesium chloride where the 1-hexene complex was also produced. Other alkyllithiums plus

$$FpCH_2CH = 0 + R^-M^+ \longrightarrow FpCH_2CHR - 0^-M^+ \xrightarrow{excess} Fp^+ - \parallel BF_4^- + H_2O$$
(2)
(3)
(4)

Grignard reagents and 2 were reacted and the results are presented in Table 1. Even the very basic s-butyl- and t-butyllithium reagents cleanly reacted and excellent yields of the alkene complexes were obtained.

The wide range of carbanions that add to 2 demonstrates the selectivity for addition over any of the other possibilities described above. In addition, this procedure provides for a very efficient synthesis of η^2 -1-alkene and diene complexes which have been shown to be versatile synthetic intermediates. The intermediate alkoxide 3 is the same as that produced in the reaction of a terminal epoxide with Fp anion [7]. It has been previously demonstrated that the free alkenes can be obtained either directly by thermal elimination in 3 or via the action of iodide ion on 4 [7]. The method described here complements the recently described Fp(η^2 -vinyl ether) cation system [8] which works best with stabilized nucleophiles to give other examples of 4. Further work on extending the procedure to the stereoselective synthesis of disubstituted alkenes is in progress.

Experimental

Infrared spectra were recorded on a Beckman 3750 or a Perkin-Elmer 298 spectrometer. NMR spectra were recorded on Varian T-60, EM-350, XL-100 or XL-300 spectrometers. Solvents were routinely dried and distilled prior to use. All

TABLE 1

reactions were carried out under a nitrogen atmosphere. Elemental analyses were performed by Galbraith Laboratories.

The organolithium reagents were purchased from Aldrich Chemical Co. while vinylmagnesium bromide was obtained from Alfa-Ventron. The other Grignard reagents were prepared from the corresponding alkyl halide and magnesium turnings in THF. The Fp(propene; 1,3-butadiene and styrene) cations have been previously reported [9].

General procedure

To a 100 ml round bottom flask with a side arm was added 2 (2.0 mmol) and 25 ml THF. The flask was cooled to -78° C and the Grignard or organolithium added. The yellow solution slowly darkened and after 10 min an ether solution of 1.25 g of 48% HBF₄ (6.8 mmol) was added. On warming, a yellow solid formed which was isolated by filtration. The product was dissolved in CH₂Cl₂, filtered and reprecipitated with ether. The yields reported in Table 1 are for this isolated product.

$Fp(\eta^2-1-hexene)^+ BF_4^-$

IR (KBr) 2038, 2080 cm⁻¹. ¹H NMR (CD₃NO₂) δ 0.92 (m, 3H), 1.2–1.8 (m, 5H), 2.50 (m, 1H), 3.44 (d, 1H, J 15 Hz), 3.92 (d, 1H, J 8 Hz), 5.4 (m, 1H). Anal. Found: C, 44.94; H, 4.86. C₁₃H₁₇BF₄FeO₂ calc: C, 44.87; H, 4.92%.

$Fp(\eta^2-3-methyl-1-pentene)^+ BF_4^-$

Two diastereomers in 60/40 ratio. IR (KBr) 2070, 2027 cm⁻¹. ¹H NMR (CH₃NO₂) 300 mHz; major isomer: δ 5.66 (s, 5H, Cp), 5.07 (ddd, 1H, J 15.0, 8.5, 8.5 Hz), 3.80 (d, 1H, J 8.5 Hz), 3.46 (d, 1H, J 15.0 Hz), 1.60 (m, 1H), 1.55 (m, 1H), 1.46 (d, 3H, J 6.2 Hz), 1.36 (m, 1H), 0.95 (t, 3H, J 7.4 Hz); minor isomer: δ 5.66 (s, 5H, Cp), 5.30 (ddd, 1H, J 15.0, 8.6, 6.1 Hz), 3.95 (d, 1H, J 8.6 Hz), 3.36 (d, 1H, J 15.0 Hz), 2.08 (m, 1H), 1.93 (m, 1H), 1.60 (m, 1H), 1.01 (t, 3H, J 7.4 Hz), 0.87 (d, 3H, J 5.6 Hz). Anal. Found: C, 45.25; H, 5.12. C₁₃H₁₇BF₄FeO₂ calc: C, 44.87; H, 4.92%.

$Fp(\eta^2-3,3-dimethyl-1-butene)^+ BF_4^-$

IR (KBr) 2070, 2030 cm⁻¹, ¹H NMR (CD₃NO₂) δ 5.7 (s, 5H, Cp), 5.46 (dd, 1H, J 15.0, 8.7 Hz), 4.05 (d, 1H, J 8.7 Hz), 3.22 (d, 1H, J 15.0 Hz), 1.20 (s, 9H). Anal. Found: C, 44.84; H, 4.86. C₁₃H₁₇BF₄FeO₂ calc: C, 44.87; H, 4.92%.

Acknowledgements

Acknowledgement is made to the Research Corporation and the donors of the Petroleum Research Fund, administered by the American Chemical Society for support of this work.

References

- 1 P.M. Treichel and R.L. Shubkin, Inorg. Chem., 6 (1976) 1328.
- 2 P. Lennon, A.M., Rosan and M. Rosenblum, J. Am. Chem. Soc., 99 (1977) 8426.
- 3 J.A. Labinger, J. Organomet. Chem., 187 (1980) 287.
- 4 C.M. Lukehart, Acc. Chem. Res., 14 (1981) 109. C.M. Lukehart and K. Srinivasan, Organometallics, 2 (1983) 1640.

- 5 A. Cutler, S. Raghu, and M. Rosenblum, J. Organomet. Chem., 77 (1974) 381.
- 6 K.H. Theopold, P.N. Becker, and R.G. Bergman, J. Am. Chem. Soc., 104 (1982) 5250.
- 7 M. Rosenblum, M.R. Saidi, and M. Madhavarao, Tetrahedron Lett., (1975) 4009; W.P. Giering, M. Rosenblum, and J. Tancrede, J. Am. Chem. Soc., 94 (1972) 7170.
- 8 T.C.T. Chang, M. Rosenblum, and S.B. Samuels, J. Am. Chem. Soc., 102 (1980) 5930; M. Rosenblum, A. Bucheister, T.C.T. Chang, M. Cohen, M. Marsi, S.B. Samuels, D. Scheck, N. Sofen, and J.C. Watkins, Pure Appl. Chem., 56 (1984) 129.
- 9 A. Cutler, D. Ehnholt, W.P. Giering, P. Lennon, S. Raghu, A. Rosan, M. Rosenblum, J. Tancrede, and D. Wells, J. Am. Chem. Soc., 98 (1976) 3495.